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a I. INTRODUCTION

Finite mixtures of continuous distributions are being used in an

increasing number of stochastic modeling efforts (see Harris, Kaylan and

Maltz, 1982; Everitt and Hand, 1981). The most common distribution applied

appears to be the mixed exponential, where the probability density function

would be written as a convex linear combination of (say) K exponential

-- subpopulations

K -'t K
r. b(t) I T i e ( Ti. = 1). (1)i1 l i=l .";"

Though such models have very general application, there are some serious

restrictions on their use. Most importantly, the functional form of this PDF

requires that its data exhibit quite a strong monotone decreasing pattern

since b(t) always lies somewhere between the K monotone subdensities. (The

precise mathematical term is that it is completely monotone.) Though it is

true that the mixed exponential (with possibly an open number of terms) has

broad potential coverage, it is clearly poorly suited for fitting data with

apparent modes and indeed any set of frequencies seeming to be nonmonotone

- decreasing.

But a variation on this mixed exponential theme can be adapted to

arbitrary data sets. This is to permit the linear proportionality constants

( i} Iin the mixed exponential model to be totally arbitrary in sign, while

still, of course, requiring that the resultant PDF remain nonnegative over its

domain. The establishment of a practical numerical procedure for doing

L
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maximum-likelihood estimation for these more general mixed exponential models

is the major subject of this work.

We refer to these nonconvex forms as GHs for generalized hyperexpo-

. nentials. It has frequently been noted in the literature (e.g., in Neuts,

1981) that the GH class is dense in the set of all CDFs on the nonnegative

,* reals. By this, we mean that there is always a GH which is as close as we may

* . wish to an arbitrary CDF measured with respect to a metric suitably defined on

the distribution space. It is also important to recognize that the general

class of linear combinations of negative exponential functions is a very

complete set of approximants in general function space. Perhaps the most

* critical characterization of this coverage is the fact that all functions in

". L2(O,-) can be approximated arbitrarily closely by a finite linear combination
2+

* of functions of the form e "¢ t  OeR . (For example, see Naylor and Sell, 1971,

for a discussion of this and related problems on the Hilbert space of square

integrable functions.)

The GH class has important relationships with a number of well-known

comprehensive families of exponentially related CDFs. The simplest of these

*. are the generalized Erlangs (GE) expressed as convolutions of independent and

not-necessarily-identical exponential random variables. When the means of

such exponentials are allowed to come in conjugate pairs (so that their

Laplace-Stieltjes transforms are inverse polynomials), Smith (1953) calls the

family Kn, where n is the degree of the defining polynomial. Cox (1955)

n

functions (clearly including the inverse polynomials), which we call R (with
n

n the degree of the denominator's polynomial). The K class includes all
n

Lregular Erlangs, but not all mixed exponentials and mixed Erlangs, which are,

however, members of R . We also mention the generalized phase-type

2L



distributions (PH) popularized by Neuts and others (see Neuts, 1981), which

have rational transforms as well, though not necessarily of the inverse

polynomial form. Thus, we may symbolically represent the relationship of

those respective families as GEcK cR and PHcR
n n n

To position the GH class together with the others, we first observe that

any member of R with real and distinct zeroes for its transform denominator
n

polynomial is a generalized hyperexponential. But not all GH are phase types,

since there are linear combinations of exponentials which are densities but

cannot be derived as the time to absorption of any Markov chain (see Dehon and

Latouche, 1982).

The numerical procedure developed for estimating the parameters of the

generalized hyperexponentials has been built up from previous work on exponen-

.' tial and Weibull mixtures. Throughout we assume that the data sampling is

complete so that all random times are fully observed. In the event that there -

are incomplete data observations, the algorithm is easily altered.

Maximum-likelihood estimation is the method selected mainly because,

under fairly general conditions, it enjoys the important limiting statistical

properties of efficiency, normality, and unbiasedness. Furthermore, the MLEs

are consistent, invariant, and are functions of sufficient statistics if they

exist. When sufficiency and unbiasedness both hold, the MLEs are also of

minimum variance.

A first key observation is that it is not possible to obtain explicit

formulas for the maximum-likelihood estimators of parameters involved in mixed

exponential densities by taking the partial derivatives and equating them to

zero. Hence we resort to other optimization methods and numerical techniques.

Furthermore, we need to take into account a set of constraints in addition to

the objective function. The mixing proportions and scale parameters must

3



* satisfy some simple linear relationships and there may exist other constraints

related to the sub-population parameters. Note that the constraints are

generally of a linear type; hence the problem can be described as a

' mathematical program with a nonlinear objective function and linear

constraints. -

II. PROBLEM STATEMENT

The target criterion function in our maximum-likelihood optimization

problem is the usual joint density function for a random sample from the

j~.. population governed by the b(t) of (1). As is common, it is much easier in

this situation to work with the logarithm of the likelihood function. Thus,

Sif we write the likelihood for the random sample ti,. t:4 as

L() = 9 b(t ;a) = II K 0i e (2)
J=l j=l i=1

where a is the vector of parameters (which may include K), then its logarithm

* is expressed as

N
L(a) = Z ln b(t.;a) (3)

j=l

The MLE problem for the (generalized) mixture may then be formulated as the

nonlinear constrained optimization problem:

max L(a)

subject to

a C S (alzri = I;0 1 0) (4)

Under the standard mixed-exponential regime, each i > 0, and $i

L would be real and also greater than 0. The most efficient algorithm available

4
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for the solution of this problem is due to the joint efforts of Kaylan (1978)

and Kaylan and Harris (1981), and Mandelbaum (1982) and Mandelbaum and Harris

(1982). It is a sequential numerical procedure whose principal sequence of

points is generated using nonlinear Jacobi-like iterations, but with an

embedded subsequence generated by Armijo steps. Details will be provided

below.

Because the mixing parameters {.i} may be negative in our problem, the

- Kaylan/Mandelbaum/Harris (K/M/H) algorithm has been carefully altered, though

- its basic approach is retained. Three major changes in the algorithm were

necessary. First, additional code had to be added to make sure that the

* density function b(t) did not become negative. The second and third

alterations were required to ensure that the algorithm generates ascent

"- directions for the {0) and {Ti), respectively, when the sign restriction on

. the {Ii } is relaxed.

III. DESCRIPTION OF THE ALGORITHM

The basis of the algorithm is the first-order, nonpost-mortem method for

the convex mixing of Weibull distributions described in Mandelbaum and Harris

* (1982). Exponential distributions are, of course, Weibull with shape
v+l

parameter one. This numerical scheme calculates the parameter values a V _

at the (v+l)st iteration as
v+l + sVd(v) (v = 0,1,2,...), (5)

where

V va is the vector of parameter values at the (v)th iteration, i.e., a

0 v v , T v 'v'*. v) (K obtains from the1f 2 '' OK' 1' 2 ... K 1 K

sum-to-one constraint);

5
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d(v) is the ascent direction generated at the (v)th iteration (described

below);

s= 2- Cv) is the step size at the (v)th iteration; and i(v) is the

v+lvsmallest nonnegative integer such that L( v  ) - L(av ) 2 t(v) 2-
"' v+l "

0 (c(v) will be described below), a e S and b(t) is

nonnegative.

The algorithm assumes a0 is user-supplied and terminates at the first

-- iteration v for which i(v) = i ( 20, currently). That is, if twenty
max

v+lbisections of the step-size do not yield an a which is feasible, which

forms a density b(t), and which evaluates to an increase in the log-likelihood

vr" function, the algorithm terminates at the presumed local maximum a I.

The ascent directions d(v) are calculated in one of two ways, depending

on the value of the iteration index v and a constant W (presently 40). If v

is not a multiple of 40, the regular iteration is employed as a variation ofpt
the nonlinear Jacobi step (see Ortega and Rheinboldt, 1970) formed by making

use of VL(a) = 0 (see Mandelbaum and Harris, 1982, for details). Otherwise,

if v is a multiple of 40, then a gradient-based Armijo step is used.

The necessity for the two types of iterations arises in the development

of the K/M/H algorithm from the use of step-size bisection in the mapping from
v v+l v
a to a Without bisection, i.e., if s = 1 for all v, the original

algorithm's mapping (5) is closed since all functions involved are continuous,

v
and hence a belongs to a compact set. But with bisection, continuity might

- occasionally be violated and convergence prevented. To avoid this potential

pathology, the Armijo step, which is convergent under bisection (see Armijo,

1966) was included to embed a convergent subsequence of points into the

principal sequence.

L.
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The potential violation of continuity may be further aggravated by

allowing unrestricted signs on each T. in the current algorithm. Though

empirically, the (I}I appear not to change from their initial signs very
-

often, in theory, the potential change in sign could cause discontinuity in

the functions comprising the principal mapping and hence, hinder convergence

of the principal sequence. The gradient-based Armijo step would not be

subject to this discontinuity and hence, serves to provide a convergent

- subsequence of points for this case as well. -

The ascent direction calculation of the regular iteration is where it has

been necessary to alter the Kaylan/Mandelbaum/Harris algorithm. The original

algorithm, at the (v)th iteration, is defined by solving the equations L

a 3L v v v v va a,...,a1 ai, a+ 1, .. ,a ) = 0 (i 1,2,...,2K-1) (6)
aa 1, a2,. 2K-1

vfor each a., i = 1,2,...,2K-l, in sequence, and setting d(v) = a - a

To allow the equations of (6) to be resolved as

vai = (a (i = 1,2,...,2K-1), (7)

vwe allow a to be used on the right-hand side if a numerical procedure

p would have been needed to isolate a.. The explicit form of the equations of .

(7) and the details of their derivation can be found in Mandelbaum (1982) and

Mandelbaum and Harris (1982). It should be noted here that although the

regular iteration makes use of gradient information, it is not a gradient

step, since the equations (6) are solved sequentially rather than

simultaneously. The gradient (steepest ascent) direction would be that

derived through solving dL/da = 0 where a and 0 are vectors.

The modified regular iteration calculates the vector a as previously, but

forms the ascent direction d(v) differently. Recalling that

1
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01 r p . .'

.a ( I 1' 2 02'' ''aK 'K' aK+l 1' K+2 '2 "a 2K-1 K-i

*(8)
where K is the number of terms in b(t) (rK is always calculated as one minus

the sum of the K-1 {T }), the elements of the ascent direction are

calculated as follows. The d.(v), i = 1,2,...,K, (i.e., the elements of the

ascent direction associated with the exponential subpopulation shape

parameters { are
[ v

if 1. 2: 0
- d.v 1i = 1,2,...,K) (9)

(a i  . if T. < 01 1 1

: To calculate the (K+l)st, (K+2)nd, through the (2K-l)th elements of di(v),

(i.e., the elements of the ascent direction associated with the mixing

coefficients {Ti i = 1,2,...,K-1)), we first calculate a test parameter s

as

K (I T.2
s = I - i2 (10) -

v
i~l T.

Then

If s -> 0, d.Cv) = a. - a. (i - K+I,K+2, ...,2K-1)1 1 1(1)'

Else (s < 0), diCv) = a. - a. (i = K+I,K+2, ...,2K-1)
1 i

The modifications in the ascent direction calculation for the regular

iteration obtain from a slight extension of the ascent direction proof for the --

original algorithm (see Mandelbaum, 1982, or Mandelbaum and Harris, 1982).

The sufficient condition for proof of ascent direction is

d(v) 0 VL(av) 2: 0. (12)

* From a simple extension of the original proof, we find that

L.
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ak J -
- i 2i N v i = ,...,K)

'.. ~ ~~~v )2 ie-t i t' .
0 b(tj),:.i '-: (13).-_,

i where N is the number of observed lifetimes. Examining the RHS of (13), since

the squared terms are nonnegative and the terms of the summation are by

" .definition nonnegative, the sign of the RHS is determined by the sign of

Vr'" Hence, (13) or its negative will always have a RHS > 0, and thus rule '

.. - (9) is satisfied.

As with rule (11), the ascent direction equations from which (11) is

r derived handle the {i. i = 1,...,K-11 together. Since under rule (9), the

first K elements of the inner product (12) are nonnegative, the sufficient " -

condition for proof of an ascent direction reduces to

h 2K-1 (v)

I d.(v) V 0 (14)au.
ilK+l 1

. Once again, a simple extension of the original proof yields

K-1 a K (T rv)2

= v 3L iN l 1 (15)..-.
1 i1

where N is the number of observations. Noting that in (10), s = s /N, and

since s' or -s' will always be nonnegative, rule (11) obtains directly.

The ascent direction calculation of the Armijo iteration of the new

algorithm is identical to that of the original algorithm; that is,

.



d(v) = VL(aV). (16)

The sufficient condition for proof of an ascent direction (12) for the Armijo

iteration is hence trivially satisfied without modification.

-p1
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IV. SOME COMPUTATIONAL EXPERIENCE

Three examples were created for testing the algorithm on the University

of Virginia's CDC Cyber 855. Samples of size 250 were generated as random

S.samples according to each of three assumed densities, namely,

.t -3t -5t- (1) g(t) = .5(e ) + .25(3e " ) + .25(5e');

*; - (2) g(t) = 4(2e 2 t) - 4(3e3t) + l(4e 4 t);

()-2t -4t -6t
(3) g(t) = 2(2e ) - 2(4e - ) + l(6e 6 ).

Plots of these densities follow in Figures 1-3; the particular forms were

chosen strictly for illustration. The first one is a simple example of a

completely monotone, ordinary exponential mixture, while the second one is

monotone decreasing but with two points of inflection. The third case, on the t .4

other hand, is a unimodal density with shape determined by the relative size

of its negative middle T-value.

*The random variates for the first density were easily created in the

usual composition or mixture way. Given the descending order of the scale

* parameters (say i = I/1i , 1/3, 1/5, we know that the optimization

routine should find a unique solution, for the algorithm collapses to the

K/M/H method in that case. Two test subcases were run, starting from equal

sets of mixture probabilities but with very different scale parameters. The

algorithm came up with nearly the same answer in almost equal time. Note that

*: although the algorithm required 98 and 97 iterations, these are done very

quickly, with the total run requiring less than 10.4 seconds cpu time.

The salient results of the two runs for test case number 1 are displayed

'" in Table 1, and the estimated density resulting from the first starting point

is plotted in Figure 4. Though the simulated data set led to different

L
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estimates than the original values, we know that the respective values would

eventually get closer with increased sample sizes. But the most important

point here is that the algorithm worked well.

Table 1

TEST CASE NUMBER 1

1 -t 3 -3t 5 -5t
Actual density g(t) e + e + e

with E[T] = 19/30 = .63
and Var[T] = 607/900 = .674.

(=l) (=.3) (=.2) (=.5) (=.25) (=.25)
S111 2 3 I 2 713 objective function

(i) starting
point .5 .4 .3 .3 .3 .3 -151.10

answer .90 .51 .09 .44 .41 .15 -122.36

(mean = .6174, variance = .4598) p

cpu seconds 10.365# iterations 98

# bisections 14: 9 for negative no
required 5 for decrement in objective function

(ii) starting %:
point 1.0 .5 .25 .3 .3 .3 -124.43

answer .90 .51 .09 .42 .43 .15 -122.35

(mean = .6174, variance = .4605)

cpu seconds 10.368

# iterations 97
# bisections 14: 9 for negative no

required 5 for decrement in objective function

L6
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The random variates for the second and third cases could not be created

by composition because of the negative mixing parameters. Instead, each of

these two densities was rewritten in mixed generalized Erlang form, from which

the variates were easily derived using composition. When written in

convolution format, these specific equivalences turned out to be

-2t -3t -4t 1 -3t -4t
g(t) = (2e * 3e *4e ) + (3e *4e ) (Case 2)

and

-2t -4t -6t 1 -6t .
g(t) =  (2e *4e *6e ) + (6e ) (Case 3)

(The equalities are verified in the simplest way by converting to Laplace

transforms.) POLL.

For these two test cases, we ran from three different starting points,

one of which was the actual answer, while another was chosen to be "close".

The results are displayed in Tables 2 and 3.

For the second case, we observe that the first and third starting points

led to answers which look like they may well be the same (and close to the

actual). There are differences in values, but we theorize that the first

answer would move toward the third if the algorithm's stopping rule were

" tightened. But it would appear that the second starting point did lead to a

* truly alternative local solution. For purposes of comparison, in Figure 5, we

offer a plot of the density functions which result from the first two

solutions. We see there that the twu unimodal densities are relatively close

to each other.

For this second test case, note that cpu seconds ranged from a high of

L 13.8 seconds to a low of 4.8. Through all three subcases, the relative use of

17



Table 2

TEST CASE NUIBER 2 p

-2t -3t -4tActual density g(t) 4(2e " ) - 4(3e " ) + 1(4e " )

with E[T] = .916
and Var[T] = .3544

(=.5) (=.3) (=.25) (=4) (=-4) (=1)
1 2 3 1 r3  objective function

(i) starting
point .5 .4 .3 5 -5 1 -208.28 .

answer .50 .38 .32 4.96 -4.94 0.98 -197.14

(mean = .9072, variance = .4268)

cpu seconds 13.766 1.
# iterations 41
# bisections 163: 5 for negative q,

required 127 for decrement in objective,
31 for nondensity appearance

(ii) starting
point .5 .4 .3 1 -1 1 -332.16

answer .71 .55 .27 .97 .75 -.72 -198.54

(mean = .9001, variance = .5013)

cpu seconds 7.891
# iterations 75
# bisections 75: 1 for negative 1,

required 65 for decrement in objective,
9 for nondensity appearance

(iii) starting

point .5 .3 .25 4 -4 1 -198.14 L

(actual answer)
answer .50 .34 .25 4.04 -4.05 1.02 -197.00

(mean = .9000, variance = .3999)

L cpu seconds 4.785
# iterations 13
# bisections 49: 45 for decrement in objective,

required 4 for nondensity appearance

,-o" 18



Table 3

TEST CASE NUMBER 3 0

2t -4t-6tActual density g(t) = 2(2e 2t) - 2(4e 4t) + l(6e 6 )

with E[T] = .6
and Var[T] = .361

(=.5) (=.25) (=.16) (=2) (=-2) (=1)
.. 71 2 113 T1 2 T3 objective function

(i) starting
point .5 .4 .3 5 -5 1 -146.06

answer .42 .34 .20 5.09 -5.10 1.01 -134.74

(mean = .6408, variance = .3728)

Cpu seconds 71.743
# iterations 307
# bisections 692: 44 for negative A,

""required 617 for decrement in objective,
31 for nondensity appearance

(ii) starting
point .5 .4 .3 1 -1 1 -170.19

answer .60 .30 .29 1.10 1.00 -1.10 -137.14

(mean = .6363, variance = .3905)

cpu seconds 2.605
# iterations 7
# bisections 24: 23 for decrement in objective,

required 1 for nondensity appearance

(iii) starting
point .5 .25 .16 2 -2 1 -135.11

(actual answer)
answer .48 .25 .17 2.04 -2.06 1.03 -134.70

(mean = .6381, variance = .3705)

cpu seconds 3.206
# iterations 18
# bisections 15: 15 for decrement in objective

required

L 19 _
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the bisection rule was comparable, most frequently resulting from a

non-improvement in the objective function. "

Of course, it should be understood that in this work we offer no

definitive strategies for locating the global solutions from amongst the

locals. The ability to arrive at the global solution likely depends on the 0

quality of the starting point. In these test cases, all starting points were

selected in an arbitrary fashion. Instead, we could use a moment matching

technique for the initial point, or possibly even a numerical curve fitting

technique (with parameters adjusted up or down to make sure it is a density).

Two such numerical approaches are documented in McDonough and Huggins (1968)

and Harman and Fairman (1973). W7

The results for our third test cases appear somewhat different in the

sense that we seem to have found three local solutions. For comparison here,

S we plotted the first two experimental densities in Figure 6 and again see that -

they are close to each other. The third one is also quite similar, but we

opted not to plot it, noting instead that it is almost identical to the

* originating density as plotted in Figure 3. This time, cpu seconds ranged -

from 2.6 to 71.7. Again, there is a preponderance of bisection because of

non-improvement, though negative n parameters caused 44 out of 692 bisections

in subcase i. Overall, the algorithm again performed well. S

21L L



*4 0

/00

K 0
suUu; ito

22/



V. CONCLUDING REMARKS

To close, we repeat our observation that the algorithm worked well. It

is clearly also well suited for the MLE of parameters from ordinary

exponential mixtures since it is guaranteed then to find the global solution.

Primary areas of possible future work include an exploration of the

statistical properties of these estimators, a firmer strategy for selecting

* "good starting points", and the derivation of possible procedures for a.
determining the optimum number of terms to include. This last concern is

akin to the step-wise regression problem and is often mentioned in the

literature as a topic of special interest. Our current code can handle any

number of terms, but that number must be specified beforehand.

23
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